Equivariant minimal immersions of compact Riemannian homogeneous spaces into compact Riemannian homogeneous spaces
نویسندگان
چکیده
منابع مشابه
A Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کاملDiscrete Groups and Non-riemannian Homogeneous Spaces
A basic question in geometry is to understand compact locally homogeneous manifolds, i.e., those compact manifolds that can be locally modelled on a homogeneous space J\H of a finite-dimensional Lie group H. This means that there is an atlas on a manifold M consisting of local diffeomorphisms with open sets in J\H where the transition functions between these open sets are given by translations ...
متن کاملThe Kinematic Formula in Riemannian Homogeneous Spaces
Let G be a Lie group and K a compact subgroup of G. Then the homogeneous space G/K has an invariant Riemannian metric and an invariant volume form ΩG. Let M and N be compact submanifolds of G/K, and I(M ∩ gN) an “integral invariant” of the intersection M ∩ gN . Then the integral
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1993
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496162138